

Ground Water Investigation

Hay Water Supply System

Summary report

Report Number: P-FY20242939-PWO-WTA-RP-001-01

March 2025

Prepared for:

Template Rev 1 July 2024

Report Number: P- FY20242939-PW0-WTA-RP-001-01

Document Control

Version	Author(s)	Reviewer(s)	Approved for issue	
			Name	Date
1 (draft)	Jay Ariyawanse	Glenn Fernandes	Glenn Fernando	10/03/25
2 (final)	Jay Ariyawanse		Jay Ariyawanse	11/03/25

Jay Ariyawanse

Principal Engineer - Water NSW Public Works, Level 30, 4 Parramatta Square, 12 Darcy Street, Parramatta, NSW 2150 Locked Bag 5022, Parramatta 2124 **p** 02 9769 9855 | **m** 0410 320 081

e jay.ariyawanse@pwa.nsw.gov.au | **w** www.publicworks.nsw.gov.au

Cover photo: Hay WTP Source: Hay Shire Council.

© State of New South Wales through Department of Primary Industries and Regional Development 2024.

This publication is copyright and may incorporate material to which an individual maintains moral rights. Other than for the purposes of and subject to the conditions prescribed under the Copyright Act 1968, no part of it may, in any form or by any means, be reproduced, altered, manipulated, stored in a retrieval system or transmitted without prior written consent of the copyright owner or owner of moral rights. Any enquiries relating to consents and use of this publication, including by NSW Government agencies, must be addressed to NSW Public Works.

While this document has been formulated with all due care, the State of New South Wales does not warrant or represent that the document is free from errors or omissions, or that it is exhaustive. The State of NSW disclaims, to the extent permitted by law, all warranties, representations or endorsements, express or implied, with regard to this document including but not limited to, all implied warranties of merchantability, fitness for a particular purpose, or non-infringement. The State of NSW further does not warrant or accept any liability in relation to the quality or accuracy of this document and no responsibility is accepted by the State of NSW for the accuracy, currency, reliability and correctness of any information in this document provided by the client or third parties.

Executive Summary

Two areas within the Lower Murrumbidgee Deep Aquifer, situated near Hay WTP, have been identified as potential groundwater sources for the Hay water supply system. This report summarises the findings of studies conducted by Hay Shire Council (HSC) to evaluate the suitability and feasibility of the groundwater source as an alternative water supply during emergencies or droughts.

.

Contents

Table of Contents

Do	cument Control	ii
Ex	ecutive Summary	iii
Со	ntents	iv
1.	Introduction	1
2.	Hydrogeological Study	1
	Bore water testing area map	
	Water quality test results	
	4.1 Microbiological Test Results	
	Hay Water Treatment Plant	
	5.1 Review of WTP's suitability to treat bore water	10
6.	Drilling new bores	10
7.	Recommendation	10

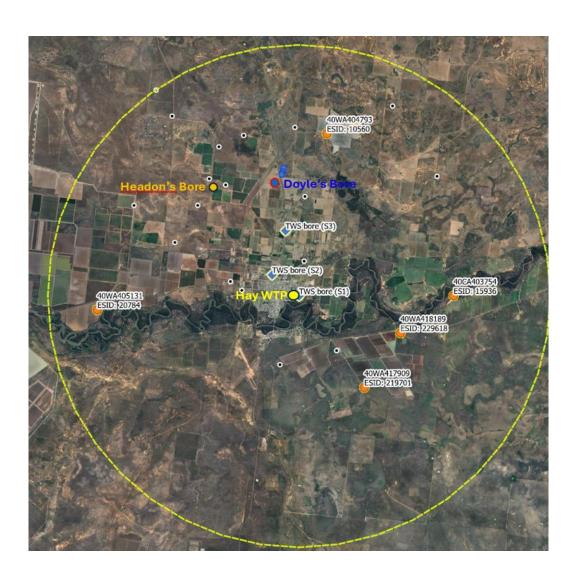
1. Introduction

Hay Shire Council operates the Hay town water scheme, providing Raw and Filtered water to the town.

The town water scheme draws its raw water from the Murrumbidgee River, with the Hay Water Treatment Plant (WTP) treating the river water before distributing it to the town. However, the water supply scheme is vulnerable to contamination—such as blue-green algae in the Murrumbidgee River—and supply disruptions during droughts, as it lacks an alternative backup source.

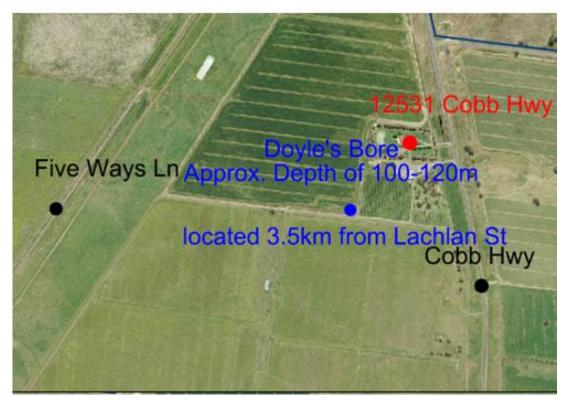
Two areas within the Lower Murrumbidgee Deep Aquifer, located within 3 km of the WTP, have been identified as potential groundwater source. To explore the feasibility of using groundwater as an emergency or drought supply, Hay Shire Council (HSC) initiated a study to assess its suitability. As part of this effort, a hydrogeologist was engaged to conduct a groundwater investigation.

Since water quality data from existing bores near the identified groundwater source were considered representative, samples were collected and tested. Additionally, an assessment was carried out to determine whether Hay WTP could effectively treat water from the new groundwater source, should treatment be necessary.


2. Hydrogeological Study

A hydrogeological study for the identified potential groundwater source was completed in October 2024, and a separate report was prepared (High-Level Groundwater Assessment report by WSP Australia Pty Ltd).

3. Bore water testing area map


Two existing bores: Doyle's Bore and Headon's Bore located in the area were selected to sample the water for testing. The locations of these two bores are shown below.

4. Water quality test results

The results of the water samples tested from the Doyle's Bore and Headon's Bore are provided below.

Table 1: Chemical and Physical parameters

	Doyle Bore Test Date: Analysis Commenced: 31/10/2024			
	Test Results	ADWG Aesthetic Level (mg/L unless otherwise specified)	ADWG Health Level (mg/L unless otherwise specified)	
Alkalinity (as CaCO3)	223			
Aluminium	<0.01	0.2	С	
Ammonia	0.32	0.5	С	
Antimony	<0.0001		0.003	
Apparent Colour	57			
Arsenic	0.003		0.01	
Barium	0.1178		2	
Boron	0.1042		4	
Bromide	2.5			
Cadmium	<0.0001		0.002	
Calcium	30.7			
Calcium Hardness as CaCo3	77.0			
Chloride	664	250	С	
Chromium	<0.001		0.05 (as Cr(VI))	
Copper	<0.001	1	2	
Dissolved Iron	0.06			
Dissolved Manganese	0.1152			

Dissolve Organic Carbon	0.0		
Dissolved Reactive Phosphorous	<0.02		
Electrical Conductivity	3080		
Fluoride	0.37		1.5
lodine	0.37		С
Iron	0.77	0.3	С
Lead	<0.0002		0.01
Magnesium	50.98		
Manganese	0.1208	0.1	0.5
Mercury	<0.0008		0.001
Molybdenum	0.0002		0.05
Nickel	0.0004		0.02
Nitrate	<1		50
Nitrite	<0.1		3
рН	7.5	pH 6.5-8.5	С
Phosphate	0.2		
Potassium	7.70		
Selenium	<0.007		0.01
Silica as SiO2	40.39	80 (as all silica)	
Silver	<0.0002		0.1
Sodium	458	180	"Not necessary"
Strontium	0.57		
Sulfate	180	250	С
TDS	1540	600	"Not necessary"
TOC	<0.01		

Total Hardness as CaCO3	286.8	"Not necessary"	200
Total Phosphorous	<50		
True Colour	5HU	15HU	
Turbidity	5.0NTU	5 NTU	С
Uranium	<0.0001		0.02
Zinc	0.02	3	С

c = "Insufficient data set a guideline value based on health consideration"

	Headon Bore Test Date: Analysis Commenced: 31/10/2024			
	Test Results	ADWG Aesthetic Level (mg/L unless otherwise specified)	ADWG Health Level (mg/L unless otherwise specified)	
Alkalinity (as CaCO3)	199			
Aluminium	<0.01	0.2	С	
Ammonia	1.08	0.5	С	
Antimony	<0.0001		0.003	
Apparent Colour	236			
Arsenic	0.00		0.01	
Barium	0.2298		2	
Boron	0.0476		4	
Bromide	1.2			
Cadmium	<0.0001		0.002	
Calcium	30.8			
Calcium Hardness as CaCo3	26.3			
Chloride	279	250	С	
Chromium	<0.001		0.05 (as Cr(VI))	

Copper	<0.001	1	2
Dissolved Iron	1.26		
Dissolved Manganese	0.0455		
Dissolve Organic Carbon	0.0		
Dissolved Reactive Phosphorous	<0.2		
Electrical Conductivity	1294		
Fluoride	0.30		1.5
Iodine	0.19		С
Iron	3.23	0.3	С
Lead	<0.0002		0.01
Magnesium	12.64		
Manganese	0.0472	0.1	0.5
Mercury	<0.0008		0.001
Molybdenum	<0.0001		0.05
Nickel	<0.0004		0.02
Nitrate	<1		50
Nitrite	<0.1		3
рН	7.3	pH 6.5-8.5	С
Phosphate	0.2		
Potassium	15.83		
Selenium	<0.007		0.01
Silica as SiO2	14.60	80 (as all silica)	
Silver	<0.0002		0.1
Sodium	183	180	"Not necessary"
Strontium	0.28		

Sulfate	<0.2	250	С
TDS	647	600	"Not necessary"
TOC	<0.1		
Total Hardness as CaCO3	78.3	"Not necessary"	200
Total Phosphorous	<0.5		
True Colour	5HU	15HU	
Turbidity	24.3NTU	5 NTU	С
Uranium	<0.0001		0.02
Zinc	0.01	3	С

c = "Insufficient data set a guideline value based on health consideration"

4.1 Microbiological Test Results

Table 2: Microbiology results

Test	Method Code	Sample ID	Sample ID			
		2024012479	20224012480	- Level		
Total Coliforms (MPN/100mL)	MW18	<1	<1			
E.coli (MPN/100mL)	MW18	<1	<1	0		
Heterotrophic Colony Count 22C°C (CFU/ml)	MW10a	<10	<10			
Headon Bore Test Date: tested on 31/10/2024 but re-booked on 05/11/2024 due to "Sample Type" wrongly used						
Test	Method Code	Sample ID		ADWG Health		
		2024012481	20224012482	- Level		
Total Coliforms (MPN/100mL)	MW18	83	100			

E.coli (MPN/100mL)	MW18	<1	<1	0
Heterotrophic Colony Count 22C°C (CFU/ml)	MW10a	93	78	

5. Hay Water Treatment Plant

The 2.2 ML/d (28 L/s) Hay WTP was commissioned in 1988 and has been in operation for approximately 37 years without a major upgrade.

The Murrumbidgee River is the raw water source. The treatment process follows a conventional approach, including coagulation, flocculation, sedimentation, and media filtration.

The main components of the WTP consist of the following:

- a concrete "Pulsator" type clarifier
- two concrete gravity sand filter cells
- concrete clear water tank underneath the building
- brick control building
- chemical dosing facilities
- machinery room for backwash pumps, compressor etc.
- two clear water pumps
- electrical switchboard
- sludge disposal facilities including two sludge lagoons
- a point-to-point contact type telemetry system.

The upflow pulse sludge blanket clarifier has been designed to operate at 1.5m3/hr/m2 loading rate.

Two open gravity sand filters are designed to operate at 5 m3/ hr/ m2 loading rate.

Alum is used as a coagulant, with powdered activated carbon dosing to address algal toxins, taste, and odour issues. Soda ash is added for pH correction, and gas chlorination is used for disinfection. Fluoridation is also carried out for dental health.

5.1 Review of WTP's suitability to treat bore water

Tables 1 and 2 present the water quality test results for Doyle's and Headon's Bores, with parameters exceeding ADWG highlighted. A brief discussion on these results, along with the suitability of the Hay WTP to treat this water, is provided below.

Doyle's Bore

The main concern is the very high sodium level, recorded at 458 mg/L, which exceeds the ADWG limit of 180 mg/L.

Total dissolved solids (TDS) are 1,540 mg/L, significantly higher than the ADWG limit of 600 mg/L.

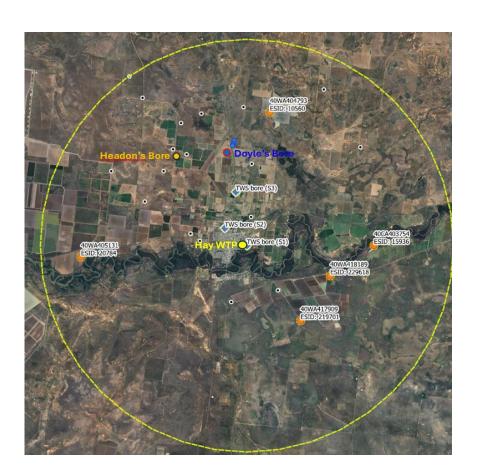
Slightly elevated levels of iron, manganese, and chloride were also reported.

Headon's Bore

A very high iron level was recorded.

Sodium and total dissolved solids **slightly exceed** ADWG limits.

Based on the test results, the water from Doyle's and Headon's bores is not considered to be of good quality, primarily due to excessive levels of sodium, dissolved solids, and iron. The Hay WTP is not equipped to manage these water quality exceedances. Upgrading the WTP and implementing new treatment processes—particularly to reduce high sodium levels—could be complex and costly.


6. Drilling new bores

The existing bores, including Doyle's Bore (100—120 m deep) and Headon's Bore (approximately 250 m deep), which were used for testing, are considered relatively shallow. According to the hydrogeologist's report, the bores need to be drilled deeper to reach the next aquifer, which may yield better-quality water. Details on test bore drilling are provided in the hydrogeological report.

7. Recommendation

It is recommended drilling a new test bore into the next layer aquifer at an appropriate location within the identified area shown with the dotted line on the below map.

